IMPACT OF NATIONAL GOVERNMENT’S BUDGETARY SUPPORT, SCHOOL CLIMATE AND FACULTY COMMITMENT ON THE PRODUCTIVITY OF STATE UNIVERSITIES AND COLLEGES IN REGION III

Enrique G. Baking

1Don Honorio Ventura Technological State University, Philippines

Correspondence should be addressed to Enrique G. Baking

Received August 26, 2015; Accepted September 11, 2015; Published September 23, 2015;

Copyright: © 2015 Enrique G. Baking et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

The main objective of the study is to determine the national governments budgetary support, school climate and faculty commitment as they relate to the productivity of State Universities and Colleges (SUCs) in Region III. The findings of the study revealed that an insignificant trend is evident by and across institutions in respect to the total budget. A significant trend over the last five years is shown in personal services and capital outlay. The area of MOOE, research and extension do not have significant increase or decrease in the budget for the last five years. The null hypothesis to the effect that there was no significant increase/decrease in the distribution of the budget according to the five budget areas is partially confirmed in the study. A significant increase/decrease is evident in personal services and capital outlay but not in MOOE, research and extension. Not a single institution exhibits a significant increase or decrease in the cost of education per student for the last five years. Budgetary support particularly capital outlay positively relates with civil engineering. Personal services positively relate with mechanical engineering and research budget positively relates with Bachelor of Elementary Education.

KEYWORDS: National government, Budgetary support, School climate, Faculty commitment, Productivity, State Universities and Colleges

INTRODUCTION

Contemporary debates on the development theory are centered on the proper role of the government. Historically, governments have tried to do most roles of the challenges of development – administer the sector policy, allocate public resources, implement, maintain, regulate or intervene. However, the benevolent postulation that underlies the role of the state as a central planner has lost its primacy in the early 80’s to an alternative paradigm, whose advocates assign crucial but limited role for the state.

No other problem more severely afflicts State Universities and Colleges (SUC’s) that the scarcity of financial resources. They are being handicapped in implementing the essential programs and pursue quality to the hilt mainly due to their inadequate budgetary allocation. As state higher education institutions in many parts of the country face rising cost, shrinking resources and increasing demands for accountability, their faculty and administrators are giving new attention to the quality of services/programs their institution offer. Hand in hand with the meager budgetary support there is an enlarged focus on quality outcomes, a new attention to quality assurance procedures, the various systems through which institution and their academics assess themselves and their institutional
performance. Continuous assessment of the faculty’s instructional and research activities, with an eye towards maintaining and improving quality. It goes without saying that effectiveness of quality assurance procedures and the appropriateness of their objectives have become a common place in colleges and universities. There is a growing concern on our country about the declining educational quality and the implications of this for our country’s competitiveness in the world economy. The emergence of global competition brings with it expanded opportunities but also increased rate. Our country is aware of the benefits that will accrue to us if new opportunities can be seized. As succinctly stated by Padua (2003), the annual government subsidy given to State Universities and Colleges is often characterized as a negotiated funding scheme. Historically, such subsidies have been incremental in nature responsive to economic inflate-factors, but not necessarily to quality considerations. The recent proposal of the Commission in Higher Education, following the patters of U.K. Funding Council, considers the link between the funding and quality education.

The sheer number of State Universities and Colleges in the Philippines demands a more rational approach in budgeting. The huge investments outlay invites public pressure demanding accountability as part of the institutions quality assurance system. The main rationale for rationalizing the budgeting process of State Universities and Colleges is grounded on the search for efficiency. Certain inequities with allocation of state resources point to the inefficient operation of the institutions.

The Commission in Higher Education, upon realization of the situations, has since 1989, begun in putting quality considerations in the SUC budgets. Since fiscal year 2002, exactly twenty percent (20%) of the maintenance budget of SUCs covered by such quality measures as passing rate in board, identification as Center for Excellence on Development and above the national passing rate for licensure examination. The performance of SUCs should therefore be strengthened and accelerated as it would mean increasing the financial capacity, which would mean raising their capacity to generate more financial resources create additional sources of revenue and income and allocate and utilize judiciously said financial resources. School climate, according to Guffey et al (2012) may evolve in one of ways: from the pressures of the external environment or from within the organization. The former is exogenous change; it arises because of the change in the external environment and endogenous change which arises because of the changes in the internal environment. When an organization, such as state institution of higher learning is seized by changes from within the organization and that from outside of the organization, it has to accommodate or respond to the reality demands of such environment in order to achieve its objective and, for that matter, in order to survive.

As Lytle and Poff (2003) aptly put it adaptation is a clear prerequisite for survival and survival is a clear prerequisite for growth. Thus, adaptation is a basic problem confronting formal organizations such as the SUCs. In the process of adaptation to change, educational leaders would have enormous responsibility to shoulder. They, as platoon leaders as former Chairman Alcala of CHED used to call them, will have to be the potent factors in the successful implementation of the program thrust of the higher education. They have to cultivate an atmosphere conducive for all the stakeholders of institutions. They have developed a strong faculty commitment so as to realize the mission, goals and objectives of the institution.

Most economists agree that it is the human resources of the nation, not its capital or material resources that ultimately determine the character and pace of its economic and social development. Cognizant of the significant contributions of budgetary support and the organizational climate viz, faculty behavior and middle level managers behavior in the attainment of lofty goals and objective of the institutions and the belief that they can become catalyst of change in coming up with splendid institutional performance, the researcher was challenged to look into the effects of selected factors on the productivity of selected state institutions in Region III.

The study, therefore, is an attempt to probe the relationship of the budgetary support of the national government, school climate and faculty commitment with the productivity of selected state institutions in Region III.

STATEMENT OF THE PROBLEM

The general problem of the study is: How do the national governments budgetary support, school climate and faculty commitment relate to the productivity of State Universities and Colleges (SUCs) in Region III?

Specifically, the study sought answer to the following questions:

I. What was the level of the national government’s budgetary support to SUCs of Region III for the last five (5) years (1998-2003)
 • Was there significant increase/decrease in the level of budgetary support each year for the last five years?
 • What was the percentage of distribution of the budget of these institutions in terms of personal services, MODE, capital outlay, research and extension service for the last five years?
 • Was there significant increase/decrease in the cost of education per student per year for the last five years?
 • Was there significant increase/decrease in the cost of education per student per year for the last five years?

II. What is the level of school climate of SUCs in Region III?

III. What is the level of faculty commitment of SUCs in terms of:
 • commitment to job; and
 • commitment to organization?

IV. What is the level of productivity of SUCs in terms of:
• percentage of passing in the licensure examination in architecture, engineering and education;
• faculty research/invention/production output; and
• faculty community services output?

V. Is there a significant relationship between the national government’s budgetary support, school climate and faculty commitment and the level of productivity of SUCs in Region III?

SIGNIFICANCE OF THE STUDY

Increased attention to the quality of performance of educational institution, i.e., quality of teaching and learning in higher education alongside with research activities has become an international trend. This trend is the result of the pressure from the government seeking to endure that they get the value of money form the institution that they fund. As the university education becomes accessible to more of the population, more expensive, more important for economic and social development, these pressures are bound to grow. Thus, more pressures are now placed on the education managers. Managing quality has come to be seen increasingly as necessary concern for the educational institution.

MATERIALS AND METHODS

Research Design

This study made use of the descriptive-normative survey type of research. Descriptive research provides scientific basis for professional judgments. Data gathered through the use of this method serve as concrete basis for decisions. Hence, professional judgments are made objective since they are based on facts (Clough and Loges, 2008). Specifically, the use of the survey method in educational research involves an in-depth interpretation of a systematically collected data through the use of numerical and comparative analysis (Castellan, 2010). Validated questionnaire and documentary analysis were used to gather the data required in this study. The data required were the budgetary support, school climate and faculty commitment as independent variables and percentage of passing the licensure examination, faculty research/invention/production output and faculty community services output as dependent variables. This study identified the relationships between the independent variables and the dependent variables.

Locale Of The Study

This study included the deans, department chairs and the faculty members of eight (8) State Universities and Colleges (SUCs) in Region III as respondents.

The eight SUCs included in the study were: (1) Bataan Polytechnic State College (BSPC) in Balanga City, Bataan, (2) Bulacan State University (BSU) in City of Malolos, Bulacan, (3) Central Luzon State University (CLSU) in Cabanatuan City, (4) Don Honorio Ventura College of Arts and Trades (DHVCAT) in Bacolor, Pampanga, (5) Pamppanga Agricultural College (PAC) in Pampanga. (6) Nueva Ecija University of Science and Technology (NEUST) in Cabanatuan City, Nueva Ecija,(7) Ramon Magsaysay Technological University (RMTU) in Iba, Zambales and (8) Tarlac State University (TSU) in City of Tarlac, Tarlac. All the Deans and department chairs and seventy percent of the total number of faculty members from the colleges of architecture, engineering and education were used as respondents. Table 1 shows the distribution of respondents.

<table>
<thead>
<tr>
<th>Institutions</th>
<th>Deans and Department Chairs</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSC</td>
<td>13</td>
<td>40</td>
</tr>
<tr>
<td>BSU</td>
<td>13</td>
<td>50</td>
</tr>
<tr>
<td>CLSU</td>
<td>13</td>
<td>40</td>
</tr>
<tr>
<td>DHVCAT</td>
<td>13</td>
<td>45</td>
</tr>
<tr>
<td>PAC</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>NEUST</td>
<td>13</td>
<td>45</td>
</tr>
<tr>
<td>RMTU</td>
<td>13</td>
<td>40</td>
</tr>
<tr>
<td>TSU</td>
<td>13</td>
<td>50</td>
</tr>
<tr>
<td>Total:</td>
<td>13</td>
<td>340</td>
</tr>
</tbody>
</table>
INSTRUMENTAL ANALYSIS

Documents were sources of data for the independent variable budgetary support and the dependant variables percentage of passing the licensure examination, faculty development output, faculty research invention/production output and faculty community services output. For the data on the independent variables school climate and faculty commitment, questionnaires were the instruments used. Part I of the questionnaire measured the organizational climate of the school. It consisted of forty one (41) items adopted from Hoy and Clover’s (1986) revised organizational climate dimension questionnaire and used by Douglas (2010). The items elicited from the respondents were the critical factors that describe the school climate. A four point school was used with “1” as the lowest and 4 as the highest. The frequency of occurrence of each statement using four-point scale is shown as follows:

<table>
<thead>
<tr>
<th>Scale</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Very Frequently Occurs</td>
</tr>
<tr>
<td>3</td>
<td>Often Occurs</td>
</tr>
<tr>
<td>2</td>
<td>Sometimes Occurs</td>
</tr>
<tr>
<td>1</td>
<td>Never Occurs</td>
</tr>
</tbody>
</table>

Part II of the questionnaire measured the faculty commitment to the job. It consisted of seventeen (17) items, five (5) of which were adopted from Jaros (2007) and the other twelve (12) items from Lodahl-Kejner Job Commitment Scale which characterize the facet of faculty’s work behavior. All respondents were asked to indicate the degree of their agreement or disagreement to each statement using seven-point scale as follows:

<table>
<thead>
<tr>
<th>Scale</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td>6</td>
<td>Moderately Agree</td>
</tr>
<tr>
<td>5</td>
<td>Slightly Agree</td>
</tr>
<tr>
<td>4</td>
<td>Neither Agree Nor Disagree</td>
</tr>
<tr>
<td>3</td>
<td>Slightly Disagree</td>
</tr>
<tr>
<td>2</td>
<td>Moderately Agree</td>
</tr>
<tr>
<td>1</td>
<td>Strongly Disagree</td>
</tr>
</tbody>
</table>
Part III of the questionnaire measured faculty commitment to the organization. It consisted of thirteen (13) items adapted from Barnato et al (2007). The items characterize acceptance of the organization’s values (identification), willingness to exert effort on behalf of the organization (involvement), and desire to remain an employee of the organization (loyalty). Respondents were asked to indicate the degree of their agreement or disagreement of each statement using a seven-point scale as follows:

<table>
<thead>
<tr>
<th>Scale</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td>6</td>
<td>Moderately Agree</td>
</tr>
<tr>
<td>5</td>
<td>Slightly Agree</td>
</tr>
<tr>
<td>4</td>
<td>Neither Agree Nor Disagree</td>
</tr>
<tr>
<td>3</td>
<td>Slightly Disagree</td>
</tr>
<tr>
<td>2</td>
<td>Moderately Agree</td>
</tr>
<tr>
<td>1</td>
<td>Strongly Disagree</td>
</tr>
</tbody>
</table>

The two instruments (school climate and faculty commitment) were subjected to minor revisions to suit the purpose of the study. For instance, the word “principal” was changed to deans/department chairs.

DATA ANALYSIS

The data gathered were collated and categorized on the basis of the problems raised in Chapter 1. The variables were coded. Data processing involved the use of Microsoft Excel Software Program for Windows 2000 and the Statistical Packages for the Social Sciences (SPSS). The data were statistically analyzed using the following tools: frequency count, percent, weighted mean, standard deviation, trend analysis and correlation analysis.

RESULTS AND DISCUSSION

Level Of Government Budgetary Support

The average level of government budgetary support in respect to the total budget in 1999 is 95768.5000 million with a standard deviation of 60420.6539 million; the year 2000 and 2001 have 95556.7500 million with a standard deviation of 57686.9557 million annually; the year 2002 has 106701.1250 million with a standard deviation of 50889.2267 million; the year 2003 has 105997.2500 million with a standard deviation of 49715.9026 million.

Increase/Decrease in the Level of Budgetary Support

The findings revealed that only two institutions exhibit significant increase in their total budget. These institutions are BPSC and PAC. Overall, an insignificant trend is evident by the across institutions in respect to the total budget.

Percentage Distribution of Budgetary Support for the last Five years

The findings show that 67% of the budget in 1999 went to personal services; 17% to MOOE; 9% to capital outlay; 4% to research; and 3% to extension. In 2000 and 2001, 70% of the budget went to personal services; 18% to MOEE; 4% to capital outlay; another 4% to research; and another 4% to extension. In 2002, 75% of the budget went to personal services; 14% to MOEE; 3% to capital outlay; while research and extension had 4% each. In 2003, 76% of the budget went to personal services; 15% to MOOE; 3% to capital outlay; 4% to research; and 3% to extension. The biggest slice of the budget went to personal services followed by MOOE. The areas in the budget which have low budgetary support are capital outlay, research, and extension.
i. Personal service. In 1999, the average budgetary support is 64122.2500 million with a standard deviation of 35236.2363; the year 2000 has 67191.3750 million with a standard deviation of 35796.4690; the year 2001 has 67191.3750 million with a standard deviation of 35796.4690; the year 2002 has 80127.3750 million with a standard deviation of 35513.8494; the year 2003 has 80614.6250 million with s standard deviations of 35650.1956 million.

ii. MOOE. The average level of government budgetary support for MOOE in 1999 is 16147.8750 million with a standard deviation of 15765.5534; the year 2000 and 2001 have 17380.3750 million annually with a standard deviation of 14002.8391; the year 2002 has 15124.8750 million with a standard deviation of 10494.7862; while the year 2003 has 16122.0000 million with a standard deviation of 8340.2419 million.

iii. Capital Outlay. In 1999, the average level of government support for capital outlay is 8437.5000 million with a standard deviation of 9143.4500; the year 2000 and 2001 have 4293.7500 million annually with a standard deviation of 5535.4983 million: the year 2002 has 2875.0000 million with a standard deviation of 5303.3009; while the year 2003 has 2500.0000 million with a standard deviation of 7071.0678 million.

iv. Research. The average level of government budgetary support for research in 1999 is 3852.5000 million with a standard deviation of 4591.5057; the year 2000 and 2001 have 3726.6250 million annually with a standard deviation of 5258.2196; the year 2002 has 4411.7500 million with a standard deviation of 3949.8815; the year 2003 has an 3656.1250 million with a standard deviation of 7071.0678 million.

v. Extension. The average level of government budgetary support for extension services in 1999 is 3209.3750 million with a standard deviation of 3326.7399; the year 2000 and 2001 have 2964.6250 million with a standard deviation of 2501.1706; the year 2002 has 4162.1250 million with a standard deviation of 2595.0498; the year 2003 has average level of government budgetary support for extension in the amount of 3104.5000 million with a standard deviation of 2095.3037 million.

Increase/Decrease in budgetary support in the budget areas for the last five years

i. Personal service. BPSC has a positive significant increase in the budget while the following institutions have significant negative trends in their budget for personal services: CLSU, DHVCAT, PAC, NEUST, and TSU. Two institutions, namely: BSU and RMTU do not register significant increase nor decrease in their budgets for the last five years. Overall, a significant trend over the last five years is shown. The trend is .0634 with an R square of .856, which is significant at .025.

ii. MOOE. BPSC and CLSU register positive significant increase. All the other institutions do not have significant increase or decrease in their budget. Overall, there is no significant increase or decrease in the budget for MOOE by and across the state institutions in Region III.

iii. Capital Outlay. Significant negative trends in the budget are evident among the following institutions: BPSC, PAC, NEUST, and RMTU, BSU and DHVCAT do not have significant increase nor decrease in their capital outlays. Overall, a significant budgetary support for capital outlay by and across institutions is event.

iv. Research. Only PAC appears to have a significant upward trend in the budget. The other institutions do not exhibit an upward or downward trend. Overall, there is no upward or downward trend in the budget for research by and across institutions.

v. Extension. Only one institution, the CLSU exhibits an upward trend. The other institutions do not exhibit an upward or downward trend in their budget for extension. The same is likewise evident by and across the institutions involved in the study.

Cost of Education per students per year for the last five years

The average cost of education per student in 1999 is 16,742.5587 pesos with a standard deviation of 9981.7329 pesos. In 2000, the average cost of education per student is 11,986.7788 pesos with a standard deviation of 6,249.9288 pesos. In 2000, the average cost of education per student is 11,986.7788 pesos with a standard deviation of 6,249.9288 pesos. In 2000, the average cost of education per student is 11,986.7788 pesos with a standard deviation of 6,249.9288 pesos. In 2000, the average cost of education per student is 11,986.7788 pesos with a standard deviation of 6,249.9288 pesos. In 2000, the average cost of education per student is 11,986.7788 pesos with a standard deviation of 6,249.9288 pesos. In 2000, the average cost of education per student is 11,986.7788 pesos with a standard deviation of 6,249.9288 pesos.

Increase/Decrease in the cost of education per student for the last five years

The findings revealed that not a single institution exhibits a significant increase or decrease in the cost of education per student for the last five years.

Level Of School Climate Of Institutions In Region III

The findings show that the means are very close to each other (between 2.6 to 2.8) in terms of the items and among the institutions. The climate items are gauge often occurs
which reveals a climate of openness, collegialism, supportiveness, and intimacy.

Level of Faculty Commitment of Institutions in Region III

COMMITMENT TO JOB

The highest mean is 3.2745 (item 2) followed by 3.2161 (item 7) and 3.2102 (item 1). This indicates that there is slight disagreement on faculty commitment to the job. The overall mean for job commitment is 3.071, which shows slight disagreement of faculty commitment suggesting low faculty commitment on the job. Data across institutions show that CLSU got the highest mean of 3.7467 followed by BPSC with a mean of 3.7145; BSU with a mean of 3.5635; DHVCAT with a mean of 2.8179; PAC with a mean of 2.7668; RMTU with a mean of 2.6797; NEUST with a mean of 2.6425; and TSU with a mean of 2.6377. This indicates that CLSU, BPSC and BSU exhibit certain degree of job commitment compared to the other institutions who slightly disagree to some facets of faculty work in the institution.

COMMITMENT TO ORGANIZATION.

The finding show that the highest mean is 4.1559 (item 6) followed by 4.0928 (item 2) and 4.0717 (item 7). This indicates that there is neither agreement nor disagreement on faculty commitment to the organization. This reveals that the faculty members are almost neutral in almost all aspects of the organization’s values. The lowest mean is garnered by Item 13 with a mean of 1.5723. Data across institutions show that the highest mean is garnered by PAC which is 3.9158; BSU has a mean of 3.8719; TSU has a mean of 3.8707. BPSC, CLSU, and RMTU have the same mean of 3.7617; NEUST has a mean of 3.7161; while DHVCAT has a mean of 3.7095. The close means of the institutions reveal that faculty members of state institutions in Region III exhibit certain degree of commitment to the organization.

Level of Productivity if Institutions in Region III

Percentage of Passing in the Licensure Examination

The average passing percentage of the institutions involved in the study in the area of architecture is 35.25% with a standard deviation of 9.25%. In engineering, civil engineering has an average passing percentage is 41.17% with a standard deviation of 11.96%. Electrical engineering has an average passing percentage is 53.67% with a standard deviation of 17.65%. Mechanical engineering has an average passing percentage of 41.17% with a standard deviation of 19.27%. In education, the average passing percentage of the institutions involved in Region III exhibit certain degree of job commitment to the organization. This indicates that CLSU, BPSC and BSU exhibit certain degree of job commitment compared to the other institutions who slightly disagree to some facets of faculty work in the institution.

Faculty Community Services Output

The findings show that only one institution has indicated the number of hours of their community output for 2000 and 2001. The other institutions have no data. In 2002, two institutions have indicated their community output giving a mean of 504 hours with a standard deviation of 531.74430. Four institutions indicate their data on community output in 2003 with a mean of 19.5000 hours and a standard deviation of 18.05547 and 19.72815, respectively. In 2003, the average faculty participation in extension services is 19.8000 with a standard deviation of 21.45227.

Relationship Of Government Budgetary Support, School Climate, And Faculty Commitment To Productivity Of Sucs In Region III

Correlation Between the Independent Variables and Percentage of Passing the Licensure Examination

Not a single independent variable relates with the licensure examination in architecture, electrical engineering, and education. Budgetary support for capital outlay positively relates to a high passing percentage in civil engineering ($r = .881; p = .020$) while budgetary support for personal services positively relates with mechanical engineering ($r = .864; p = .26$).

Correlation between the Independents Variables and Faculty Research/Invention/Production Output

Not one of the independent variables conceptualized in the study contributes to research and production output.

Correlation between the Independent Variables and Faculty Community Services Output

The research budget positively relates with a higher passing percentage in the Bachelor of Elementary Education ($r = .961; p = .039$). In BSE, not a single independent variable appears to relate to its passing percentage in the licensure examination.
CONCLUSIONS

Based on the findings, the following conclusions are arrived:

An insignificant trend is evident by and across institutions in respect to the total budget.

The null hypothesis to the effect that there is no significant increase/decrease in the level of budgetary support of the national government to the state institutions in Region III for the last five years (1999-2003) is fully confirmed in the study.

A significant trend over the last five years is shown in personal services and capital outlay. The area of MOOE, research and extension do not have significant increase or decrease in the budget for the last five years.

The null hypothesis to the effect that there was no significant increase/decrease in the distribution of the budget according to the five budget areas is partially confirmed in the study. A significant increase/decrease is evident in personal services and capital outlay but not in MOOE, research and extension.

Not a single institution exhibits a significant increase or decrease in the cost of education per student for the last five years.

The null hypothesis to the effect that there was no significant increase/decrease in the cost of education per students per year for the last five years among the institutions involved in the study is fully supported in the study.

Budgetary support particularly capital outlay positively relates with civil engineering. Personal services positively relate with mechanical engineering and research budget positively relates with Bachelor of Elementary Education.

The null hypothesis to the effect that budgetary support, school climate and faculty commitment do not significantly relate to the productivity of state institutions in Region III is only partially confirmed in the study. School climate and faculty commitments do not relate with any of the independent variables.

RECOMMENDATIONS

The following recommendations are offered.

Finding reveal that budgetary support for capital outlay and personal services positively relate with higher passing percentage in the licensure examination for engineering.

This reveals that to attract the best educators in the field, they must be appropriately compensated. Because of this, there is a need to rationalize the budget so that budgetary appropriation in these areas can be generated if not increased. While it is true that it is very hard to have these budget areas increased by the government, perhaps, foreign funding and donations for engineering equipment may be generated.

Research budget positively relates with elementary education LET passers. Education researches are not as expensive as engineering researches. Research grants may be awarded to education researches. Project leaders of these researches may be encouraged to involve would be teachers in the conduct of research to be able to provide them experience on the rudiments or research. This way, their inductive and deductive reasoning are cultivated at the same thing preparing them for the licensure examinations.

Findings reveal the inadequacy of data in respect to productivity indicators such as research output and extension services. There is therefore a need for administrators among state universities and colleges to strengthen their research and extension capabilities. Faculty members may be encouraged to conduct research through teams to strengthen their research skills. Deloading can likewise be applied so that faculty member can participate in research and extension activities. Various incentives can likewise be used to be able to encourage faculty members to conduct research. Among others, these incentives may include honoraria, publications of outputs, research trainings, research grants, extension workshop and travels.

i. Job and organization commitment among faculty members appears to be subdued and restrained. Limited budgetary provisions should not hinder the initiative and productivity of faculty to give the best of their abilities and service to the institution. Perhaps, the faculty may be encouraged to be loyal and respect the values of the institution by creating a climate of trust and stability. Administrators must be good models and therefore, administrators can generate the trust and the respect of the faculty if they mean what they say and set an example. Moreover, administrators must be creative when it comes to human relations so that faculty can be encouraged to help the institution in the attainment of its goals and objectives.

ii. The limited number of institutions involved in the study allowed for the insufficient provision of necessary data on institutional productivity (i.e., licensure passing percentage. Because of this, cause and effect relationships cannot be established. It is recommended that further studies may consider expanding the study to include more institutions and likewise, other regions to establish the generalizability of the findings.

iii. In addition, future studies may include the inclusion of other variables which could perhaps explain performance and productivity of institutions such as: leadership capabilities of administrators, income generating activities (products produced/services rendered by the institution), income from savings (tuition and other fees of students).
REFERENCES

[2] Castellan, C.

